First Job’s the Charm

by Alexander Speirs

“Choose a job you love, and you will never have to work a day in your life.” This is one of the few Confucius sayings with which I can fully identify. Although I suppose I’m not actually the best judge on that front, as I have only had jobs in academia throughout my life. The closest I’ve had to a “regular” work is tutoring during high school along with some volunteering and extracurricular organizational work. Straight out of high school I began an internship funded by the National Science Foundation with Dr. Roland Kawakami’s group at the University of California, Riverside (UCR), and I have simply never stopped working in research.


The Kawakami Group at Mt. Rubidoux in Riverside, California. Dr. Roland Kawakami is in the middle of the top row and I am to the far right in the bottom row.

To clarify, the positions I’ve held, both at The Ohio State University and at UCR, fall into the category of experimental condensed matter physics research, which is a fancy way of saying we study materials, ranging from your standard metals (iron, copper, nickel, etc) to the novel two-dimensional sheet of carbon called graphene. Now, “What’s so great about this gig?” you might ask. Physics, and other more math-centric scientific concentrations (engineering, computer science, etc) depend more on application and evolution of knowledge, as opposed to memorization and technique. I prefer it this way, it makes being bored a rare occurrence. When you are working on a specific project, it is normal that the methods and even the goals change as you go, and the results are often quite beautiful.


Part of my summer project at OSU, acid-etched silicon wafers resulting in a vibrant rainbow pattern.

One of the main factors keeping me interested in this profession is the constant evolution that other jobs seem to lack. I often feel slightly left out when I hear friends and colleagues discussing past jobs and experiences, however I can’t imagine myself enjoying any other job. My understanding is that most “normal” jobs, such as clerical, retail or restaurant positions, involve extremely repetitive tasks or routines. In my 2 years working at UCR’s Nanoscale Spintronics Laboratory, the closest I came to having a routine was regularly producing graphene samples, and even then there were constant changes from problems cropping up, improvements being made and needs evolving. This constant adaptation is the way of things when you are working on scientific research, as our work generally does not extend beyond a fundamental understanding. I (and most scientists) are like children in this way, we tend to be distracted by shiny new things, almost never being involved in application phases. I would like to be able to give a run-through of what an average day of work is for me, but the truth is that I never have an average day. As an undergraduate in research, I often shadow graduate students in their efforts, learning and contributing where I can, but their days rarely go as planned either. This is another aspect that makes this path desirable for me: everyone is constantly learning. Even our “boss” (the Professor or Principal Investigator) constantly adapts to new information. For instance, when our vacuum chamber was disabled by a procedure involving reactive gasses, many members of the group, including the Principal Investigator and myself, quickly decided to shift the study and procedure to the furnace system which I was currently working with.


The proposed electronic device for a collaborative project of which my graphene production focused on.

In my spare time, I enjoy building things, from circuits and models to more radical projects such as a ten foot tall trebuchet. This is likely another reason I enjoy my job so much, because it’s similar to my hobbies, but on a much more fundamental level. I like to call many of my projects “big boy Legos”, such as designing and building an extruded aluminum and steel frame to protect us from potential explosions in the lab. Even my graphene production essentially involves stacking carbon and other materials such as metals or semiconductors, but on the atomic scale. One of the main differences is that now I get to play with much more expensive and potent toys. For instance: when moving lab locations at UCR, I was handed one small piece of equipment from our extremely large and complicated vacuum chamber; I was then told that it was worth over twenty thousand dollars. Needless to say, I am very careful around even the most basic looking items in the lab. I also get to work with ultra-high vacuum systems, flammable gases, reactive substances, high voltages and corrosive liquids on a daily basis. I believe that if I were to switch careers, anything else would just seem boring by contrast.


Big Boy Legos: An extruded aluminum frame to enclose the lab’s furnace (upper left).


An example of the expensive component: an atomic hydrogen source. Source: SVT Associates, Inc.

I doubt that I will ever leave the sciences, for a reason told best by Richard Feynman: “You say you are a nameless man.** You are not to your wife and to your child. You will not long remain so to your immediate colleagues if you can answer their simple questions when they come into your office.” There is a definite joy and meaning in simply being able to answer questions and expand knowledge. Despite a certain arrogance that comes from physics being the “purest” science, it is certainly impossible to say that any one person is more knowledgeable than another. In most meetings that I’ve attended, everyone in the room is the resident expert on some aspect, facet or procedure. That sort of identity and importance is very endearing, and leads us to be more productive, more invested in ourselves, the group, and the research. With all of this in mind, I hope to always have a career in this field, it is always interesting and exciting.

**Remember, women are physicists too!


About Alexander Speirs

BioPicBorn and raised in the desert valley of Riverside, California, I was inclined to stay indoors to escape the relentless heat and sun. I read lots of books, played lots of video games, and watched lots of Discovery Channel. I still do all of these things, but currently my focus is on my undergraduate studies at the University of California, Riverside, and on my research projects as well as my officer position in the student chapter of the Materials Research Society at UCR. I play bass guitar, enjoy cooking, programming, building and blowing things up, and the occasional physical activity (football, frisbee, rock climbing) or beach trip.

When I grow up I want to be a ____

by Anne Benjamin and Megan Harberts

What do you want to be when you grow up?

It’s a question that people are asked from an early age, but one that takes a long time to find an answer for. Even once you pick a major in college you still have lots of options. For example, students that study physics can have careers as researchers, professors, teachers, writers, computer programmers, and even as business people, just to name a few possibilities. Physicists can work at universities, government agencies, non-profit organizations, or private companies.  Private companies are often referred to as “industry.”

To answer the question for ourselves, we (Anne and Megan) have been taking advantage of some of the career exploration opportunities offered by the Center for Emergent Materials at The Ohio State University. In March, we visited the Air Force Research Lab (AFRL, a government lab) at Wright Patterson Air Force Base in Dayton, Ohio, and in May we took a two-day industry trip to Ford Motor Company’s Research and Development (R&D) labs in Dearborn, Michigan.

Like many, but not all, of our fellow graduate students, both of us went directly from high school to college for our bachelors degrees and then straight into graduate school. Because we are both actively doing research for our PhDs at a university, we are familiar with the workings of academic research but only have some idea of what employment at a government lab or in industry might entail.

We do know that there are important differences in how academic, government, and industrial labs direct their research efforts. Modern industry tends to focus on applied research, whereas university and government labs tend toward basic research. Basic research focuses on understanding fundamental science without specific applications in mind, while applied research attempts to meet a specific need or produce a specific product.

We could see the contrast between the two types during our visit to Ford, where we learned that one of their main goals is reducing their environmental impact. They described their research on alternatives to plastic for car interiors, some of which are already standard in their cars.  In comparison, the lab where Anne works at Ohio State currently focuses on exploring the properties and interactions of individual atoms in materials and Megan’s projects attempt to understand and use an organic magnetic material that disintegrates on exposure to air. These experiments are more directed toward our comprehension of materials and their properties than on the products that may result. Our visit to AFRL revealed a focus that fell between basic and applied research. The scientists there are not developing a specific product like a car, but because their research funding comes from the US Department of Defense they must show that their research will have practical military applications.

Our visits to both AFRL and Ford were similarly structured: they began with presentations that gave an overview of the organization and were followed by lab tours in which we interacted with the scientists working there.

One of the scientists at AFRL explained the structure of the research labs, which are broken into “directorates” by research focus, with each directorate located at different Air Force bases around the US.  We heard from scientists in the Materials and Manufacturing Directorate.

AFRL facilities and their respective directorates. Source: AFRL

After the introduction, we visited a ceramics lab where they research ways to strengthen materials like the ones used for space shuttle thermal protection tiles. When hot, the tiles become brittle and can be damaged by impact from debris.  We also toured a liquid crystal lab (think LCD TVs or smart phone screens) and tried on a pair of glasses that block sunlight with the flip of a switch.

Thermal protection tile from the Space Shuttle Endeavor that was damaged by a piece of foam during launch.  Source: Wikipedia

At Ford, we saw a presentation from one of the managers who discussed the philosophy of the corporation, its current place in the economy, where the R&D department fell within the larger company, and some of the project goals for the department. We also heard from several scientists, including an OSU Physics graduate who had worked for Megan’s current adviser, about what physicists – as opposed to engineers or biologists – can do at Ford.

Main entrance to Ford’s Research and Innovation Center in Dearborn, Michigan.  Source: Ford

Like our visit to AFRL, we next visited several labs and talked briefly with the scientists there. We saw what their workspaces are like, heard about their projects and got a glimpse of how they are carried out, and asked lots of questions about what their jobs are like. Anne’s favorite was the biological fuel scientist who was talking so enthusiastically about his project that our tour guide had to cut him off. Megan’s favorite lab uses alternative materials like corn, soy, and shredded money to replace some of the current plastics in car interiors. In the following video, you can watch a  presentation on soy-based car seats.

At Ford we also had the opportunity to eat lunch in their cafeteria and ask a few of the scientists who worked there in-depth questions about whatever we pleased. Many of them shared their experiences working in different departments and talked about the history of Ford.  It was interesting to hear how Ford once focused on more basic research and how that has changed recently, especially after the 2007 recession.

We both really enjoyed our visit to AFRL and Ford. It was very helpful to explore career options and talk to the people actually doing those jobs.  We now have a better sense of what industry and national laboratory jobs would be like and made some connections that may be useful in our job searches. Megan still has not decided exactly what path to pursue, but feels like she might want to work in industry after visiting Ford. While she does not want to work at either Ford or AFRL, these visits helped Anne cement her desire to work for a private company or applied-research government lab. We are both grateful for the opportunities to explore our career options, and encourage you to take advantage of similar opportunities to visit workplaces related to jobs that may interest you.


About Anne Benjamin and Megan Harberts

picture for bioMegan (left) and Anne (right) are both physics graduate students doing experimental condensed matter research as part of the Center for Emergent Materials (CEM).  Anne and Megan have both previously written for A Day in the Life: So Why Physics?, What is Clean?, and Women in Science AND Sports.  You can follow Megan on Twitter: @meganharberts.